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'data.frame': 352 obs. of 4 variables:
$ height: num 152 140 137 157 145 ... 
$ weight: num 47.8 36.5 31.9 53 41.3 ...
$ age : num 63 63 65 41 51 35 32 27 19 54 ...
$ male : int 1 0 0 1 0 1 0 1 0 1 ...
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• Height data collected in the 1960s on the !Kung San 
foraging population

• We want to better understand the population
• Explore how the measurements we have are related to 

each other
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Comparison of Male vs. Female Weight among !Kung San
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Height vs age among !Kung San
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data {
int num_people;
vector<lower=0>[num_people] weights;
vector<lower=0> heights[num_people];

}

Model height as a function of weight: 
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Construct mathematical model you think generated the data:

In Stan, we’d now write the parameters of this model:

parameters {
real beta;
real alpha;
real<lower=0> sigma;

}
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Construct mathematical model you think generated the data:

And then write the likelihood:

model {
heights ~ normal(beta * weights + alpha, sigma);

}
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Think about reasonable priors for your parameters:
• Beta measures the association between weight and height, in cm/kg
• Alpha is the intercept, or average height for someone with no weight (not a 

particularly useful number on its own)
• Sigma is the standard deviation capturing un-modeled variation in the population

In Stan:
model {

heights ~ normal(beta * weights + alpha, sigma);
beta ~ normal(0, 10); // cm/kg
alpha ~ normal(50, 50); // avg cm for 0 kg
sigma ~ normal(0, 5); // variation from average

}
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Sanity check:
1. Draw parameter values from priors
2. Generate data based on those parameter values
3. Fit model to generated data
4. Check fit is reasonable

generated quantities {
real<lower=0> heights[N];
real beta = normal_rng(0, 10);
real alpha = normal_rng(50, 50);
real sigma = fabs(normal_rng(0, 5));
for (n in 1:N)
heights[n] = normal_rng(beta * weights[n] + alpha, sigma);

}
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Inference for Stan model: heights_workflow.
4 chains, each with iter=2000; warmup=1000; thin=1;
post-warmup draws per chain=1000, total post-warmup draws=4000.

mean se_mean sd 2.5%   25%   50%   75% 97.5% n_eff Rhat
alpha 38.60    0.20 7.69 23.66 33.37 38.53 43.73 54.10  1427    1
beta  15.41    0.00 0.12 15.16 15.32 15.41 15.49 15.64  1432    1
sigma  7.48    0.03 1.07  5.80  6.73  7.35  8.06  9.98  1248    1

fit.real = sampling(heights_workflow, list(N = nrow(hdata), 
heights=hdata$height, weights=hdata$weight))
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Warning messages: 
1: There were 13 divergent transitions after warmup. Increasing 
adapt_delta above 0.8 may help. See http://mc-
stan.org/misc/warnings.html#divergent-transitions-after-warmup
2: There were 70 transitions after warmup that exceeded the 
maximum treedepth. Increase max_treedepth above 10. See http://mc-
stan.org/misc/warnings.html#maximum-treedepth-exceeded
3: There were 4 chains where the estimated Bayesian Fraction of 
Missing Information was low. See http://mc-
stan.org/misc/warnings.html#bfmi-low
4: Examine the pairs() plot to diagnose sampling problems
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For each sample from parameter space, generate some fake measurements, and see how 
they match up against the real measurements.

generated quantities {
real h_ppc[N];
for (n in 1:N)
h_ppc[n] = normal_rng(beta * weights[n] + alpha, sigma);

}
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Use these tools to compare predictive distributions and other quantities of 
interest among models.

Iterate!
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